MicroPIV methodology using model systems for flow studies in heterogeneous biopolymer gel microstructures
Artikel i vetenskaplig tidskrift, 2013

A methodology for studying flow in heterogeneous soft microstructures has been developed. The methodology includes: (1) model fractal or random heterogeneous microstructures fabricated in PDMS and characterised using CLSM; (2) μPIV measurements; (3) Lattice–Boltzmann simulations of flow. It has been found that the flow behaviour in these model materials is highly dependent on pore size as well as on the connectivity and occurrence of dead ends. The experimental flow results show good agreement with predictions from the Lattice–Boltzmann modelling. These simulations were performed in geometries constructed from 3D CLSM images of the actual PDMS structures. Given these results, mass transport behaviour may be predicted for even more complex structures, like gels or composite material in, e.g., food or biomaterials. This is a step in the direction towards predictive science with regards to tailoring soft biomaterials for specific mass transport properties.

Biomaterial

Micro-PIV

Microstructure

μPIV

Flow simulation

PDMS

CLSM

Model material

Microfluidics

Mass transport

Författare

Kristin Sott

SuMo Biomaterials

Chalmers, Kemi- och bioteknik, Kemisk apparatteknik

Tobias Gebäck

SuMo Biomaterials

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Maria Pihl

SuMo Biomaterials

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

Niklas Lorén

SIK – Institutet för Livsmedel och Bioteknik AB

Anne-Marie Hermansson

Chalmers, Kemi- och bioteknik, Livsvetenskaper

SuMo Biomaterials

Alexey Geynts

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Anders Rasmuson

Chalmers, Kemi- och bioteknik, Kemisk apparatteknik

Journal of Colloid and Interface Science

0021-9797 (ISSN) 1095-7103 (eISSN)

Vol. 398 15 May 2013 262-269

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

Ämneskategorier

Beräkningsmatematik

Polymerteknologi

Textil-, gummi- och polymermaterial

Strömningsmekanik och akustik

DOI

10.1016/j.jcis.2013.02.022

Mer information

Senast uppdaterat

2020-08-18