Experimental assessment of a large sample cell for laser ablation-ICP-MS, and its application to sediment core micro-analysis
Artikel i vetenskaplig tidskrift, 2010

The coupling of laser ablation (LA) to inductively coupled plasma-mass spectrometry (ICP-MS) enables the direct analysis of solid samples with micrometric resolution. Analysis is often restricted to relatively small samples owing to the dimensions of conventional ablation cells. Here, we assess the performance of a large rectangular, commercially-available sample cell which enables analysis over a 10.2 x 5.2 cm(2) area. Comparison with the conventional cell shows a small to moderate performance decrease for the large cell resulting from the dilution of ablated particles in a larger volume with a 4-31% lower signal output and longer signal tailings. The performance of this cell is however sufficient for the determination of both major and trace elements in many kinds of samples. The applicability of the large cell LA-ICP-MS setup was demonstrated by the determination of Al, Si, Mn, Fe, Cu, Zn Pb and U in sediment core sections at a resolution of 0.6 mm. Detection limits for sediment analysis were 7 mg Al kg(-1), 68 mg Si kg(-1), 0.5 mg Mn kg(-1), 20 mg Fe kg(-1), 0.2 mg Cu kg(-1), 0.3 mg Zn kg(-1), 0.08 mg Pb kg(-1) and 0.003 mg U kg(-1). Cyclic patterns, which would have been overlooked by conventional analysis at cm resolution, were observed in analysed sediments. This study demonstrates the potential of LA-ICP-MS in environmental analysis, with the large sample cell setup offering the possibility to analyse a wider range of samples without sectioning.

plasma-mass spectrometry

performance

elements

Trace

Sediment core

Large volume cell

LA-ICP-MS

Micro analysis

Författare

Gabriele Carugati

Chalmers, Bygg- och miljöteknik, Vatten Miljö Teknik

Sebastien Rauch

Chalmers, Bygg- och miljöteknik, Vatten Miljö Teknik

malin Kylander

Stockholms universitet

Mikrochimica Acta

0026-3672 (ISSN) 1436-5073 (eISSN)

Vol. 170 1-2 39-45

Ämneskategorier

Kemi

DOI

10.1007/s00604-010-0377-2

Mer information

Senast uppdaterat

2018-03-01