A continuum-based multiphase DNS method for studying the Brownian dynamics of soot particles in a rarefied gas
Artikel i vetenskaplig tidskrift, 2019

In the mitigation of particulate matter (PM) using filters, the interplay between particle motion, geometry and flow conditions determines the overall performance. In such flows, molecular effects on the particle motion manifest as impeded momentum transfer and a meandering Brownian motion. Other particles and walls induce hydrodynamic interactions, which may further influence PM nucleation, growth and aggregation. Here, we formulate a multiphase direct numerical simulation framework to investigate these complex flows by including the molecular interactions in a consistent manner.

The basis for this framework is a coupling between the Langevin description of particle motion with a mirroring immersed boundary method. We show that the method is able to capture the diffusion dynamics of a Brownian particle, including its transition from a particle-inertia dominated, correlated ballistic regime to a non-correlated diffusive one, and that the method also can be used to reproduce the meandering motion of realistic soot particles.

Langevin dynamics

Nanoparticles

DNS

Rarefied flow

Immersed boundary method

Brownian dynamics

Författare

Ananda Subramani Kannan

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Vasilis Naserentin

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Aristotelio Panepistimio Thessalonikis

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

Andreas Mark

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

Dario Maggiolo

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Gaetano Sardina

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Srdjan Sasic

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Henrik Ström

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Chemical Engineering Science

0009-2509 (ISSN)

Vol. 210 115229

En kontinuummodell för Brownsk rörelse i förtunnande gas-partikelflöden

Vetenskapsrådet (VR) (2015-04809), 2016-01-01 -- 2019-12-31.

Drivkrafter

Hållbar utveckling

Ämneskategorier

Energiteknik

Kemiteknik

Annan fysik

Nanoteknik

Strömningsmekanik och akustik

Fundament

Grundläggande vetenskaper

DOI

10.1016/j.ces.2019.115229

Mer information

Senast uppdaterat

2019-10-15