Experimental Search for Quantum Advantages in Thermodynamics (ESQuAT)
Research Project, 2023 – 2027

The technology advances of the last decades are forcing us to re-think laws and concepts of thermodynamics. An intense theoretical effort is underway to understand the role of quantum mechanical ingredients in thermodynamic processes. This effort might ultimately lead to more powerful engines, less energy waste, faster-charging batteries. However, despite pioneering experimental work, progress is hindered by the lack of a comprehensive experimental testbed for quantum thermal machines.
In this project I aim to provide the most ambitious and systematic experimental search for quantum advantages in thermodynamics thus far, based on a circuit quantum electrodynamics architecture.
I will first complement the toolkit of circuit quantum electrodynamics with a novel arrangement, which I term the engineered physical bath. This bath has a broadband, Ohmic spectral density. It can be populated with any spectral distribution and coupled to quantum thermal machines with arbitrary strengths. Finally, heat flows between the bath and the machine can be detected deep in the quantum regime and in a spectrally resolved way. Based on this augmented architecture, I will implement three types of novel quantum refrigerators. I devised each refrigerator to pinpoint the utilization of a specific quantum resource: quantum coherence, measurement backaction, and collective effects. I will measure the cooling power of the refrigerators while in situ exploring an unprecedently large space of parameters and connect my results to the most recent theoretical frameworks.
From this investigation, I expect two kinds of scientific breakthroughs: (i) observation of features that are unambiguously nonclassical in thermodynamic observables, and (ii) determination of advantages enjoyed by quantum thermal machines when fairly compared to their classical counterparts. Broadly, this project will deepen our understanding of quantum thermodynamics while establishing a new standard for experiments in the field.

Participants

Simone Gasparinetti (contact)

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Technology

Funding

European Commission (EC)

Project ID: EC/HE/101041744
Funding Chalmers participation during 2023–2027

More information

Latest update

2023-02-01