Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations
Journal article, 2008

Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network), six ground-based stations in Western Europe, from 79 degrees N to 28 degrees N, all equipped with Fourier Transform infrared (FTIR) instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995-2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O-3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar). The observed total column ozone trends are in agreement with previous studies: 1) no total column ozone trend is seen at the lowest latitude station Izana (28 degrees N); 2) slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47 degrees N), only one of them being significant; 3) the highest latitude stations Harestua (60 degrees N), Kiruna (68 degrees N) and Ny-Alesund (79 degrees N) show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10-18 km, 18-27 km, and 27-42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lower-most stratosphere at the two mid-latitude stations, and at Ny-Alesund. We find smaller, but significant trends for the 18 27 km layer at Kiruna, Harestua, Jungfraujoch, and Izana. The results for the upper layer are quite contrasted: we find significant positive trends at Kiruna, Harestua, and Jungfraujoch, and significant negative trends at Zugspitze and Izana. These ozone partial columns trends are discussed and compared with previous studies.

HIGH-RESOLUTION

RECOVERY

NORTHERN

MOLECULAR SPECTROSCOPIC DATABASE

RETRIEVAL

ABSORPTION

SEARCH

SPECTRA

Author

C. Vigouroux

Belgian Institute for Space Aeronomy (BIRA-IASB)

M. De Maziere

Belgian Institute for Space Aeronomy (BIRA-IASB)

P. Demoulin

University of Liège

C. Servais

University of Liège

F. Hase

Karlsruhe Institute of Technology (KIT)

T. Blumenstock

Karlsruhe Institute of Technology (KIT)

I. Kramer

Karlsruhe Institute of Technology (KIT)

M. Schneider

Karlsruhe Institute of Technology (KIT)

Johan Mellqvist

Chalmers, Department of Radio and Space Science, Optical Remote Sensing

Anders Strandberg

Chalmers, Department of Radio and Space Science, Optical Remote Sensing

V. Velazco

Universität Bremen

J. Notholt

Universität Bremen

R. Sussmann

Karlsruhe Institute of Technology (KIT)

W. Stremme

Karlsruhe Institute of Technology (KIT)

A. Rockmann

Karlsruhe Institute of Technology (KIT)

T. Gardiner

National Physical Laboratory (NPL)

M. Coleman

National Physical Laboratory (NPL)

P. Woods

National Physical Laboratory (NPL)

Atmospheric Chemistry and Physics

1680-7316 (ISSN) 1680-7324 (eISSN)

Vol. 8 23 6865-6886

Subject Categories

Aerospace Engineering

DOI

10.5194/acp-8-6865-2008

More information

Latest update

11/19/2019