A GPS Carrier-Phase Aided Clock Transport for the Calibration of a Regional Distributed Time Scale
Paper in proceeding, 2009

Clock transportation is a historically proven time transfer method for the calibration of time links and time scales. With the establishment of satellite-based time transfer methods, however, clock transportation has become less attractive especially on long baselines. In order to match for instance the GPS common view time transfer method with calibration uncertainties of a few nanoseconds, it is necessary to transport high quality, expensive clocks such as caesium beam frequency standards. The stability of the clock during transportation and the duration of the transport set the limit of the prediction uncertainty. Being able to measure the clock during transportation instead of predicting it would yield some major advantages: (a) the use of less expensive and small clocks such as rubidium or quartz oscillators for transportation, (b) no need for environmental conditioning of the transported clock, and (c) the duration of the transport is not critical as long as the clock can continuously be measured. One solution to the clock measurement problem during transport is the use of GPS carrier-phase observations as described and evaluated in this paper. It is shown that a calibration uncertainty of less than one nanosecond is potentially achievable.

Author

R. T. Kenneth Jaldehag

SP Sveriges Tekniska Forskningsinstitut AB

Carsten Rieck

Chalmers, Department of Radio and Space Science, Space Geodesy and Geodynamics

Per O. J. Jarlemark

SP Sveriges Tekniska Forskningsinstitut AB

Proceedings EFTF-IFCS2009 joint conference 20-24 April 2009, IEEE catalog number:CFP09FRE-CDR

1075-6787 (ISSN)

659-663
9781424435104 (ISBN)

Subject Categories

Control Engineering

DOI

10.1109/FREQ.2009.5168265

ISBN

9781424435104

More information

Latest update

9/6/2018 1