Alternating Polyfluorenes Collect Solar Light in Polymer Photovoltaics
Journal article, 2009

The effort to improve the energy conversion efficiency of polymer solar cells has led to the design of novel donor polymers. To improve open circuit photovoltages (OCVs) and the spectral coverage of the solar spectrum, researchers have looked for materials with high HOMO values, an easily modified electronic structure, and sufficient electronic transport within the polymers. One advance in design from our laboratories has been the development of a class of alternating polyfluorene copolymers (APFOs), which can be combined with fullerenes to make bulk heterojunction materials for photovoltaic conversion. This Account describes copolymers of fluorene that we designed to expand the range the optical absorption of solar cells to include wavelengths out to 1000 nm. In most cases, we combine these polymers with acceptors from the fullerene family, typically the phenyl C61 butyric acid methyl ester (PCBM) molecule, to generate solar cell materials. The synthesis of alternating copolymers of fluorene with various donor−acceptor−donor elements provides the opportunity to shift both HOMO and LUMO, which we have followed by electrochemical spectroscopy. Moving the LUMO of the APFOs farther from the vacuum level eventually leads to a situation where the driving force for photo-induced charge transfer from polymer donor to fullerene acceptor goes to zero, resulting in inefficient charge generation. Moving the HOMO level closer to the vacuum level reduces the OCV of devices made from bulk heterojunction blends. As we move the bandgap toward lower energies and increase the overlap of optical absorption with the solar spectrum, both these events eventually occur. In devices based on these APFO/fullerene blends, the performance depends on the OCV, the photocurrent under solar illumination, and the fill factor. The fill factor is influenced by electrical transport and charge generation. Optimizing these parameters requires new solutions to the perennial conflict between optically thin devices, where electrical extraction of charge is not a limitation, and the optically thick devices, where extraction of charge is hampered by trapping and recombination. As a result, we have developed methods to trap light in optically thin devices. When the thin film flexible solar cells are folded, multiple reflection between adjacent solar cells leads to a longer path length for the photon through the devices and considerable improvement of the optical dissipation in the active material. These optical tricks also enable an alternative route to tandem devices, where two different bandgap materials are located on adjacent folds. Thus light not absorbed in one cell is reflected onto the next cell to produce an effective optical series arrangement. Using experiments and simulations of the light trapping effects, we demonstrate power conversion efficiency enhancements of up to a factor of 1.8.

Author

Olle Inganäs

Linköping University

Fengling Zhang

Linköping University

Mats Andersson

Chalmers, Chemical and Biological Engineering, Polymer Technology

Accounts of Chemical Research

0001-4842 (ISSN) 1520-4898 (eISSN)

Vol. 42 11 1731-1739

Subject Categories (SSIF 2011)

Polymer Chemistry

DOI

10.1021/ar900073s

More information

Latest update

2/28/2018