Magnetotransport characteristics of strained La0.7Sr0.3MnO3 epitaxial manganite films
Journal article, 2009

The electrical and magnetic characteristics of La0.7Sr0.3MnO3 (LSMO) epitaxial manganite films are investigated by different methods under conditions when the crystal structure is strongly strained as a result of mismatch between the lattice parameters of the LSMO crystal and the substrate. Substrates with lattice parameters larger and smaller than the nominal lattice parameter of the LSMO crystal are used in experiments. It is shown that the behavior of the temperature dependence of the electrical resistance for the films in the low-temperature range does not depend on the strain of the film and agrees well with the results obtained from the calculations with allowance made for the interaction of electrons with magnetic excitations in the framework of the double-exchange model for systems with strongly correlated electronic states. Investigations of the magneto- optical Kerr effect have revealed that an insignificant (0.3%) orthorhombic distortion of the cubic lattice in the plane of the NdGaO3(110) substrate leads to uniaxial anisotropy of the magnetization of the film, with the easy-magnetization axis lying in the substrate plane. However, LSMO films on substrates (((LaAlO3)(0.3)+(Sr2AlTaO6)(0.7))(001)) ensuring minimum strain of the films exhibit a biaxial anisotropy typical of cubic crystals. The study of the ferromagnetic resonance lines at a frequency of 9.76 GHz confirms the results of magnetooptical investigations and indicates that the ferromagnetic phase in the LSMO films is weakly inhomogeneous.

magnetic phase-diagram

domain-structure

substrate

magnetoresistance

thin-films

Author

Gennady Ovsyannikov

Chalmers, Microtechnology and Nanoscience (MC2)

A. M. Petrzhik

National Research University of Electronic Technology (MIET)

I. V. Borisenko

National Research University of Electronic Technology (MIET)

A. A. Klimov

National Research University of Electronic Technology (MIET)

Y. A. Ignatov

National Research University of Electronic Technology (MIET)

V. V. Demidov

National Research University of Electronic Technology (MIET)

S. A. Nikitov

National Research University of Electronic Technology (MIET)

Journal of Experimental and Theoretical Physics

1063-7761 (ISSN) 1090-6509 (eISSN)

Vol. 108 1 48-55

Subject Categories (SSIF 2011)

Other Engineering and Technologies

DOI

10.1134/S1063776109010075

More information

Created

10/6/2017