Temperature-Dependent Infrared Spectroscopy of Proton-Conducting Hydrated Perovskite BaInxZr1-xO3-x/2 (x=0.10-0.75)
Journal article, 2010

We investigate the temperature dependence of the O-H stretch band in the infrared absorbance spectra of the proton-conducting hydrated perovskites BaInxZr1-xO3-x/2 (x = 0.10-0.75) over the temperature range -160 to 350 degrees C. Upon increasing temperature from -160 to 30 degrees C, we show that there is a redistribution of protons from nonsymmetrical structural configurations, such as Zr-OH-In and Zr-OH-Zr-vacancy, where the degree of hydrogen bonding between the protons and neighboring oxygens is strong, to symmetrical configurations, such as Zr-OH-Zr and In-OH-In, where hydrogen bonding is weaker. Spectra measured at elevated temperatures, 30-350 degrees C, indicate preferential desorption of protons in sites where the degree of hydrogen bonding is strong, and show that the materials gradually dehydrate with increasing temperature. The dehydration rate is found to be highest in the temperature range 275-325 degrees C. Furthermore, the spectroscopic results indicate that strong hydrogen bonding, caused by dopant-induced short-range structural distortions, is favorable for high proton mobility and that the rate-limiting step in the conduction mechanism is the proton transfer between neighboring oxygens.

Author

Maths Karlsson

Lund University

Aleksandar Matic

Chalmers, Applied Physics, Condensed Matter Physics

Ezio Zanghellini

Chalmers, Applied Physics, Condensed Matter Physics

Istaq Ahmed

Chalmers, Chemical and Biological Engineering, Environmental Inorganic Chemistry

Journal of Physical Chemistry C

1932-7447 (ISSN) 1932-7455 (eISSN)

Vol. 114 13 6177-6181

Subject Categories

Condensed Matter Physics

DOI

10.1021/jp910307u

More information

Latest update

3/2/2018 9