Dressed relaxation and dephasing in a strongly driven two-level system
Journal article, 2010

We study relaxation and dephasing in a strongly driven two-level system interacting with its environment. We develop a theory which gives a straightforward physical picture of the complex dynamics of the system in terms of dressed states. In addition to the dressing of the energy diagram, we describe the dressing of relaxation and dephasing. We find a good quantitative agreement between the theoretical calculations and measurements of a superconducting qubit driven by an intense microwave field. The competition of various processes leads to a rich structure in the observed behavior, including signatures of population inversion.

Resonance

Dynamics

Superconducting Qubit

Author

Christopher Wilson

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Göran Johansson

Chalmers, Microtechnology and Nanoscience (MC2), Applied Quantum Physics

Tim Duty

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Fredrik Persson

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Martin Sandberg

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Per Delsing

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Physical Review B - Condensed Matter and Materials Physics

24699950 (ISSN) 24699969 (eISSN)

Vol. 81 2 Art. no. 024520- 024520

Subject Categories (SSIF 2011)

Condensed Matter Physics

DOI

10.1103/PhysRevB.81.024520

More information

Created

10/6/2017