The Influence of Temperature on the Measurements of Reynolds Stresses in Shear Free Turbulence Near a Wall
Journal article, 1998
Temperature changes have a significant influence on the measurements of Reynolds stresses in turbulent boundary layers. As compared to the spanwise velocity fluctuations the streamwise turbulence intensity is especially sensitive to temperature deviations. Although this is a general statement its importance is clearly elucidated in a shear-free turbulence near a solid wall, since the mixing due to turbulence production is minimized in this flow. A consequence of temperature influence on hot-wire measurements is that frictional heating from the wall has produced contradictory results in different experiments on shear-free turbulence. In the current paper, measurements of streamwise and spanwise turbulence intensities have been conducted at different wall temperatures, thereby simulating the contradictory results mentioned above. A simple model has been developed showing that the turbulence intensities are affected by both the rms. value of the temperature fluctuations and the correlation between fluctuating temperature and velocity. These correlations are measured and the developed model is used to explain deviations in earlier measurements on shear-free turbulence. Moreover, the individual magnitudes of the two correlations in the temperature correction are estimated and their individual importance is discussed.