Influence of pore size on the redifferentiation potential of human articular chondrocytes in poly(urethane urea) scaffolds
Journal article, 2011

The chemical and physical properties of scaffolds affect cellular behaviour, which ultimately determines the performance and outcome of tissue-engineered cartilage constructs. The objective of this study was to assess whether a degradable porous poly(urethane urea) scaffold could be a suitable material for cartilage tissue engineering. We also investigated whether the post-expansion redifferentiation and cartilage tissue formation of in vitro expanded adult human chondrocytes could be regulated by controlled modifications of the scaffold architecture. Scaffolds with different pore sizes, < 150 µm, 150-300 µm and 300-500 µm, were seeded with chondrocytes and subjected to chondrogenic and osteogenic induction in vitro. The poly(urethane urea) scaffold with the smaller pore size enhanced the hyaline-like extracellular matrix and thus neocartilage formation. Conversely, the chondrocytes differentiated to a greater extent into the osteogenic pathway in the scaffold with the larger pore size. In conclusion, our results demonstrate that poly(urethane urea) may be useful as a scaffold material in cartilage tissue engineering. Furthermore, the chondrogenic and the osteogenic differentiation capacity of in vitro expanded human articular chondrocytes can be influenced by the scaffold architecture. By tailoring the pore sizes, the performance of the tissue-engineered cartilage constructs might be influenced and thus also the clinical outcome in the long run.

neocartilage formation

scaffold architecture

chondrocytes

redifferentiation

Author

Hanna Stenhamre

University of Gothenburg

Chalmers, Chemical and Biological Engineering, Polymer Technology

Ulf Nannmark

University of Gothenburg

Anders Lindahl

University of Gothenburg

Paul Gatenholm

Chalmers, Chemical and Biological Engineering, Polymer Technology

Mats Brittberg

University of Gothenburg

Journal of tissue engineering and regenerative medicine

1932-7005 (eISSN)

Vol. 5 7 578-588

Subject Categories

Surgery

DOI

10.1002/term.350

PubMed

21154679

More information

Latest update

2/21/2018