On the modeling of the unloading modulus for metal sheets
Paper in proceeding, 2010

The springback phenomenon is defined as the elastic recovery of the residual stresses produced during the forming of a material. An accurate prediction of springback puts high demands on the constitutive modeling. A constitutive model for springback prediction should of course be able to accurately predict the stress state after the forming phase. However, it should also be able to predict the material behavior during the unloading phase. In classical plasticity theory, the unloading of a material after plastic deformation is assumed to be linearly elastic with the stiffness constantly equal to Young’s modulus. However, several experimental investigations have revealed that this is an incorrect assumption. The main purpose of the present work has been to formulate a constitutive model that can accurately predict the unloading behavior of a sheet metal material. The new model is based on a classical elastic-plastic framework, and it is totally independent on the choice of yield criterion and hardening evolution law.

unloading

stiffness degradation

Simulation

Springback

Author

Per-Anders Eggertsen

Chalmers, Applied Mechanics, Material and Computational Mechanics

Kjell Mattiasson

Chalmers, Applied Mechanics, Material and Computational Mechanics

Proceedings of the 13th ESAFORM conference, Brescia, Italy

Subject Categories (SSIF 2011)

Mechanical Engineering

Applied Mechanics

Manufacturing, Surface and Joining Technology

Areas of Advance

Production

More information

Created

10/7/2017