Simulating organic pollutant flows in urban stormwater: development and evaluation of a model for nonylphenols and phthalates
Journal article, 2011

Stormwater-quality models can be useful tools for predicting pollutant loads and identifying sources of contamination. Most models in current use handle pollutants such as metals, nutrients and suspended solids, whereas models including emerging organic contaminants are rare. This study aims at developing and evaluating a model for simulating stormwater flows of two groups of organic pollutants; nonylphenols and phthalates. Sources, emission patterns and environmental fate were examined to create a model framework for the organic contaminants. The model was calibrated using field data from three urban catchments. The results show that the simulated pollutant concentrations are overestimated compared to the measured concentrations, which are often close to or below the analytical detection limit. The high uncertainty and the low predictive power of the model may be explained by factors such as incorrect catchment data, lack of knowledge on buildup, washoff and other processes involved in substance fate, and an underreporting of pollutant concentrations in stormwater. More data on release patterns and sewer fate are needed to adequately simulate stormwater concentrations of nonylphenols and phthalates. A conventional substance flow analysis based on bookkeeping, evaluated in parallel to the computer model, has proven to be useful for calculating fluxes of nonylphenols and phthalates in urban catchments.

stormwater-quality model

organic contaminants

substance flow analysis (SFA)

urban runoff

Diffuse emission

Author

Karin Björklund

Chalmers, Civil and Environmental Engineering, Water Environment Technology

Per-Arne Malmqvist

Chalmers, Civil and Environmental Engineering, Water Environment Technology

Ann-Margret Hvitt Strömvall

FRIST competence centre

Chalmers, Civil and Environmental Engineering, Water Environment Technology

Water Science and Technology

0273-1223 (ISSN) 19969732 (eISSN)

Vol. 65 3 508-515

Areas of Advance

Building Futures (2010-2018)

Subject Categories (SSIF 2011)

Water Engineering

DOI

10.2166/wst.2011.251

More information

Created

10/7/2017