DNA Binding Properties of 2,7-Diazapyrene and its N-methylated Cations Studied by Linear and Circular Dichroism Spectroscopy and Calorimetry
Journal article, 1997

The binding of 2,7-diazapyrene (DAP), N-methyl-2,7-diazapyrenium monocation (MDAP), and N,N'-dimethyl-2,7-diazapyrenium dication (DMDAP) to calf thymus DNA has been studied with respect to molecular geometry and thermodynamics. It is concluded from flow linear dichroism (LD) and induced circular dichroism (CD) spectra that the three diazapyrenes bind by intercalation to alternating AT as well as GC polynucleotide duplexes, as indicated by strong interactions with the transitions of the nucleobases in conjunction with approximately perpendicular orientations of the in-plane symmetry axes relative to the DNA helix axis. The reduced LD (LDt = LD/A(iso)) of the DNA complexes is characterized by marked fine structure, decreasing in the order DAP > MDAP > DMDAP. This finding is interpreted in terms of a microscopic heterogeneity associated with rotational mobility of the ligand in a tilted intercalation pocket, with the dication DMDAP having less rotational freedom than the neutral DAP has. Other distinct differences between the three diazapyrenes are revealed in their thermodynamic parameters of binding. DAP binds with a negative Delta H degrees (-9 kcal/mol) and a negative Delta S degrees (-7 cal/(mol K)), whereas the binding of the dication DMDAP is entropically driven (+43 cay(mol K)) but enthalpically disfavored (+5.2 kcal/mol), the monocation MDAP having an intermediate position (Delta H degrees = -3 kcal/mol, Delta S degrees = +12 cal/(mol K)).

Author

Hans-Christian Becker

Department of Physical Chemistry

Bengt Nordén

Department of Physical Chemistry

Journal of the American Chemical Society

0002-7863 (ISSN) 1520-5126 (eISSN)

Vol. 119 25 5798-5803

Areas of Advance

Nanoscience and Nanotechnology (SO 2010-2017, EI 2018-)

Energy

Life Science Engineering (2010-2018)

Materials Science

Subject Categories (SSIF 2011)

Physical Chemistry

Roots

Basic sciences

DOI

10.1021/ja963919k

More information

Created

10/7/2017