Advanced Schottky Diode Receiver Front-Ends for Terahertz Applications
Doctoral thesis, 2011

This thesis treats the development of high frequency circuits for increased functionality of terahertz receiver front-ends based on room temperature Schottky diode technology. This includes the study of novel circuit integration schemes, packaging concepts as well as new measurement and characterisation techniques. As the main result, a novel broadband waveguide integrated sideband separating (2SB) receiver topology for future Earth observation submillimetre wave instruments is proposed. The 2SB receiver topology has an inherent low RF and LO port voltage standing wave ratio (VSWR) and high sideband ratio (SBR). It is based on subharmonic (x2) Schottky diode double sideband (DSB) mixers with embedded IF low noise amplifiers (LNA's) and LO and RF 90 degree waveguide hybrids. Access to the IF IQ-paths makes it possible to implement phase and amplitude imbalance compensation schemes. Sideband separation is done in the analog domain by the use of an IF 90 degree hybrid or in the digital domain by using an IQ-correlator spectrometer. The use of embedded LNA's reduces the IF losses and leads to a low ripple and broadband response. Measured results on a prototype 2SB receiver operating in the 320 GHz to 360 GHz frequency range show an untuned SBR of 15 dB over the whole band and mixer noise consistent with the optimal performance of a DSB mixer. The LO return loss is measured to be approximately 15 dB (broadband) and the RF return loss is estimated to have similar performance. A 340 GHz DSB receiver with an embedded custom designed 3-15 GHz LNA has also been developed. By co-simulation of the mixer and LNA using a simple mixer noise model it is shown that accurate prediction of the receiver noise response is possible. The DSB receiver exhibits ultra low noise over the 12 GHz IF bandwidth, with a minimum input receiver noise temperature of 870 K (DSB). Two novel differential line phase shifters based on stepped impedance and coupled-line filter structures are proposed. The filters have a minimum lateral distribution making them well suited for use in submillimetre wave circuits. A method for TRL-calibration of terahertz monolithic integrated circuits (TMIC's) is also proposed and demonstrated. The method allows for embedded S-parameter characterisation of waveguide integrated TMIC devices and circuits.

terahertz electronics

TRL-calibration

frequency converters

down converters

phase shifters

S-parameter measurements

Schottky diodes

subharmonic mixers

radiometers

terahertz technology

submillimetre wave technology

heterodyne receivers

differential phase shifters

sideband separating mixers

Kollektorn (A423), Kemivägen 9, MC2, Chalmers
Opponent: Professor Robert Weikle, University of Virginia, Charlottesville, VA, USA

Author

Peter Sobis

Chalmers, Microtechnology and Nanoscience (MC2), Terahertz and Millimetre Wave Laboratory

GigaHertz Centre

A 170 GHz 45 degree Hybrid for Submillimeter Wave Sideband Separating Subharmonic Mixers

IEEE Microwave and Wireless Components Letters,;Vol. 18(2008)p. 680-682

Journal article

A Low VSWR 2SB Schottky Receiver

IEEE Transactions on Terahertz Science and Technology,;Vol. 1(2011)p. 403-411

Journal article

Water Vapor Radiometer for ALMA

Proc. of 20th International Symposium on Space Terahertz Technology, Charlottesville, USA, 20-22 April, 2009,;(2009)p. 174-177

Paper in proceeding

STEAMR Receiver Chain

20th International Symposium on Space Terahertz Technology,;(2009)p. 320-325

Paper in proceeding

High/low-impedance transmission-line and coupled-line filter networks for differential phase shifters

IET Microwaves, Antennas and Propagation,;Vol. 5(2011)p. 386-392

Journal article

Compact 340 GHz Receiver Front-Ends

20th International Symposium on Space Terahertz Technology,;(2009)p. 183-189

Paper in proceeding

Submillimeter Wave S-Parameter Characterization of Integrated Membrane Circuits

IEEE Microwave and Wireless Components Letters,;Vol. 21(2011)p. 110-112

Journal article

I det här industridoktorandprojektetet har vi tillsammans med Omnisys Instruments forskat och utvecklat nya högfrekvens-mottagare till bl.a STEAMR, som är det svenska bidraget till europas nästa generations miljösatellit PREMIER. Instrumentet innehåller en avancerad THz-sensor som har till uppgift att generera en tredimensionell karta över ozon, växthusgaser och föroreningar i jordens atmosfär kontinuerligt under många år. Detta kommer att ge en unik möjlighet att studera de kemiska processer, transportprocesser och komplexa väderfenomen som äger rum i atmosfären, vilket i sin tur kommer att leda till bättre klimatmodeller. I stort kommer detta bidra till en ökad förståelse för människans inverkan på klimatet och en nyanserad bild över de krav som måste ställas för en hållbar utveckling. Specifikt så har vi forskat på nya kretstopologier som kan förbättra prestandan hos THz-mottagare lämpade för industriell tillverkning. Detta har gjorts parallellt med utveckling av framtidens THz-teknologi baserad på monolitiskt integrerade kretsar på extremt tunna membransubstrat bara ett par micrometer tjocka. Forskning har skett på komponentnivå men med en helhets syn, dvs från hur komponenter tillverkas och sätts ihop till deras funktion och interaktion med andra komponenter i det slutgiltiga systemet. Som resultat har vi föreslagit och demonstrerat en helt ny typ av sidbandsseparerande mottagare med extremt hög bandbredd som bevarar informationen om molekyllinjerna.

Areas of Advance

Information and Communication Technology

Subject Categories (SSIF 2011)

Electrical Engineering, Electronic Engineering, Information Engineering

Other Electrical Engineering, Electronic Engineering, Information Engineering

ISBN

978-91-7385-544-0

Technical report MC2 - Department of Microtechnology and Nanoscience, Chalmers University of Technology: 192

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 3225

Kollektorn (A423), Kemivägen 9, MC2, Chalmers

Opponent: Professor Robert Weikle, University of Virginia, Charlottesville, VA, USA

More information

Created

10/7/2017