An Optimal Beamforming Strategy for Wide-Field Surveys With Phased-Array-Fed Reflector Antennas
Journal article, 2011

An optimal beamforming strategy is proposed for performing large-field surveys with dual-polarized phased-array-fed reflector antennas. This strategy uses signal-processing algorithms that maximize the beam sensitivity and the continuity of a field of view (FOV) that is formed by multiple closely overlapping beams. A mathematical framework and a newly developed numerical approach are described to analyze and optimize a phased array feed (PAF) system. The modeling approach has been applied to an experimental PAF system (APERTIF prototype) that is installed on the Westerbork Synthesis Radio Telescope. The resulting beam shapes, sensitivity, and polarization diversity characteristics (such as the beam orthogonality and the intrinsic cross-polarization ratio) are examined over a large FOV and frequency bandwidth. We consider weighting schemes to achieve a conjugate-field matched situation (max. received power), maximum signal-to-noise ratio (SNR), and a reduced SNR scenario but with constraints on the beam shape. The latter improves the rotational symmetry of the beam and reduces the sensitivity ripple, at a modest maximum sensitivity penalty. The obtained numerical results demonstrate a very good agreement with the measurements performed at the telescope.

phased

feeds

array feeds (PAFs)

radio astronomy

focal plane arrays

Antenna arrays

efficiency

system modeling techniques

noise

reflector antenna

polarimetry

array signal processing

Author

Marianna Ivashina

Chalmers, Signals and Systems

Netherlands Institute for Radio Astronomy (ASTRON)

O. Iupikov

Sevastopol National Technical University

Rob Maaskant

Chalmers, Signals and Systems, Communication and Antenna Systems, Antennas

W. van Cappellen

Netherlands Institute for Radio Astronomy (ASTRON)

T. Oosterloo

Netherlands Institute for Radio Astronomy (ASTRON)

IEEE Transactions on Antennas and Propagation

0018-926X (ISSN)

Vol. 59 6 1864-1875 5725169

Areas of Advance

Information and Communication Technology

Subject Categories

Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/tap.2011.2123865

More information

Latest update

5/24/2019