Quartz Crystal Microbalance with Dissipation Monitoring and Surface Plasmon Resonance Studies of Carboxymethyl Cellulose Adsorption onto Regenerated Cellulose Surfaces
Journal article, 2011

Adsorption of anionic polyelectrolytes, sodium salts of carboxymethyl celluloses (CMCs) with different degrees of substitution (DS = 0.9 and 1.2), from aqueous electrolyte solutions onto regenerated cellulose surfaces was studied using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) experiments. The influence of both calcium chloride (CaCl(2)) and sodium chloride (NaCl) on CMC adsorption was examined. The QCM-D results demonstrated that CaCl(2) (divalent cation) caused significantly greater CMC adsorption onto regenerated cellulose surfaces than NaCl (monovalent cation) at the same ionic strength. The CMC layers adsorbed onto regenerated cellulose surfaces from CaCl(2) solutions exhibited greater stability upon exposure to flowing water than layers adsorbed from NaCl solutions. Both QCM-D and SPR results showed that CMC adsorption onto regenerated cellulose surfaces from CaCl(2) solutions increased with increasing CaCl(2) concentration up to the solubility limit (10 mM). Voigt-based viscoelastic modeling of the QCM-D data indicated that the CMC layers adsorbed onto regenerated cellulose surfaces had shear viscosities of eta(f) approximate to 10(-3) N.s.m(-2) and elastic shear moduli of mu(f) approximate to 10(5) N.m(-2). Furthermore, the combination of SPR spectroscopy and QCM-D showed that the CMC layers contained 90-95% water. Adsorption isotherms for CMCs in CaCl(2) solutions were also obtained from QCM-D and were fit by Freundlich isotherms. This study demonstrated that CMC adsorption from CaCl(2) solutions is useful for the modification of cellulose surfaces.

topochemical

modification

viscoelastic properties

ellipsometry

cationic polyelectrolyte

film thickness

qcm-d

binding

spectroscopy

layers

coupled water

Author

Z. L. Liu

Virginia Polytechnic Institute and State University

DuPont

H. Choi

University of Wisconsin Madison

Virginia Polytechnic Institute and State University

Paul Gatenholm

Chalmers, Chemical and Biological Engineering, Polymer Technology

A. R. Esker

Virginia Polytechnic Institute and State University

Langmuir

07437463 (ISSN) 15205827 (eISSN)

Vol. 27 14 8718-8728

Subject Categories

Chemical Sciences

DOI

10.1021/la200628a

More information

Created

10/7/2017