A faster collision detection method applied on a sheet metal press line
Paper in proceeding, 2011

Geometrical collision detection is a time and resource consuming simulation task. In order to decrease time and resources, a general method applicable for 2D motions has been developed. The method is useful in simulation cases where 3D CAD data is part of an iterative method, e.g. optimization. The method is based on a transformation of a general 3D problem to a 2D problem, eliminating the need of 3D CAD models. Press Line simulations during the last decade have been accepted as a quality improvement method. Today simulations of automated press lines are done for internal collision checks in dies and external collision checks against dies and material handling equipment. If these collisions are not detected in simulations, they result in delays, in introduction of a new product in the line, so called line tryout or later when the line is ramped up to decide rate. The results of these collisions are used for pre-die design, design of grippers, maintenance and production planning. In this paper a new method, based on 2D simplifications, is developed and tested successfully in a virtual model of a press line at Volvo Car Manufacturing. Die Uppers 2 917 708 triangles and Die Lowers 602 686 triangles where reduced to 58 and 90 points. The result of the method shows substantial reduction of geometry data and considerable improvement in collision detection evaluation time over general 3D algorithms in the tested case.

Author

Nima K. Nia

Fredrik Danielsson

Bengt Lennartson

Chalmers, Signals and Systems, Systems and control

The 21st International Conference on Flexible Automation and Intelligent Manufacturing (FAIM), June, Taichung,Taiwan

833-840

Subject Categories (SSIF 2011)

Production Engineering, Human Work Science and Ergonomics

Areas of Advance

Production

More information

Created

10/8/2017