Computational study of the adsorption and dissociation of phenol on Pt and Rh surfaces
Journal article, 2012

The adsorption of phenol on flat and stepped Pt and Rh surfaces and the dissociation of hydrogen from the hydroxyl group of phenol on Pt(111) and Rh(111) were studied by density functional calculations. On both Pt(111) and Rh(111), phenol adsorbs with the aromatic ring parallel to the surface and the hydroxyl group tilted away from the surface. Furthermore, adsorption on stepped surfaces was concluded to be unfavourable compared to the (111) surfaces due to the repulsion of the hydroxyl group from the step edges. Transition state calculations revealed that the reaction barriers, associated with the dissociation of phenol into phenoxy, are almost identical on Pt and Rh. Furthermore, the oxygen in the dissociated phenol is strongly attracted by Rh(111), while it is repelled by Pt(111).

finding saddle-points

minimum energy paths

metals

pyrolysis

elastic band method

augmented-wave method

hydrodeoxygenation

Author

M. L. Honkela

Aalto University

University of Liverpool

J. Bjork

Linköping University

University of Liverpool

Mats Persson

Chalmers, Applied Physics, Materials and Surface Theory

Physical Chemistry Chemical Physics

1463-9076 (ISSN) 1463-9084 (eISSN)

Vol. 14 16 5849-5854

Subject Categories

Chemical Sciences

DOI

10.1039/c2cp24064e

More information

Latest update

3/19/2018