On weak and strong convergence of numerical approximations of stochastic partial differential equations
Doctoral thesis, 2012
Weak convergence
Stochastic partial differential equation
Wiener process
Additive noise
Finite element
Cahn-Hilliard-Cook equation
Error estimate
Hyperbolic equation
Truncation
Strong convergence
Rational approximation
Parabolic equation
Author
Fredrik Lindgren
University of Gothenburg
Chalmers, Mathematical Sciences, Mathematics
Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise
Numerical Algorithms,;Vol. 53(2010)p. 309-320
Journal article
Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes
BIT Numerical Mathematics,;Vol. 53(2013)p. 497-525
Journal article
Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise
BIT (Copenhagen),;Vol. 52(2012)p. 85-108
Journal article
Spatial approximation of stochastic convolutions
Journal of Computational and Applied Mathematics,;Vol. 235(2011)p. 3554-3570
Journal article
Subject Categories
Mathematics
Computational Mathematics
Roots
Basic sciences
Infrastructure
C3SE (Chalmers Centre for Computational Science and Engineering)
ISBN
978-91-7385-787-1
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 3468
Pascal
Opponent: Professor Klaus Ritter, Fachbereich Mathematik, Technische Universität Kaiserslautern, Tyskland.