Mängden av fossila bränslen är begränsad och inom en nära framtid kommer det bli en bristvara och de fossila bränslena kommer därmed inte kunna användas som en källa för energi. Förbränningen av fossila bränslen bidrar dessutom till den globala uppvärmningen och därför behövs det hållbara energikällor som dessutom kan återbildas, förnybar energi.Solen är den största källan och producerar hela vårt årsbehov av energi, under endast en timme! Solceller tar solljuset och omvandlar det till elektricitet. Även om dagens solceller är effektiva och driftsäkra är de fortfarande för dyra för att kunna konkurera med energin som kommer från fossila bränslen. På 90-talet upptäckte man att polymerer, så kallade konjugerade polymerer, kan användas för detta ändamål. Blandar man dessa konjugerade polymerer med ytterligare en nyligen upptäckt molekyl, Buckminster fullerenen, kan man omvandla solljuset till elektricitet. Genom att använda en kostnadseffektiv produktionsprocess kan effektiva och billiga polymera solceller tillverkas.Designen av dessa konjugerade polymerer är mycket specifik och utbytet av en atom mot en annan kan redan omvandla en dåligt fungerande polymer till en bra fungerande. Denna avhandling behandlar designen, syntesen och utvärderingen av konjugerade polymerer. Syftet är att etablera viktiga förhållanden mellan struktur och egenskap med slutmålet att förstå hur effektivitet, kostnad och livstid kan kombineras till nästa generations energi källa.
The amount of fossil fuels on Earth is limited, so the consumption of fossil fuels leads to a shortage of fossil fuels and therefore a shortage of energy in the near future. Also, burning fossil fuels for energy production contributes to global warming. Therefore we need to use clean energy sources that replenish themselves: renewable energy.
The Sun is the largest renewable energy source we can use. It produces all the energy we yearly need, in only 1 hour! Solar cells are able to harvest sunlight and convert it into electricity. Even though the current solar cells are efficient and reliable, they are still too expensive to compete with the energy produced from fossil fuels.
In the 90’s it was discovered that specially designed plastics, called ‘conjugated polymers’, can be used for this purpose. By mixing these conjugated polymers with another recent discovery, the ‘buckyball’, sunlight can be converted into electricity. Combined with a very cheap production process, polymer solar cells hold the promise to be efficient and cheap.
The design of these conjugated polymers is very specific since changing one atom most of the time changes a bad performing polymer in a well performing polymer, or vice versa. This thesis deals with the design, synthesis and analysis of conjugated polymers to establish these structure-property relationships with the ultimate goal to understand how efficiency, cost and lifetime can be combined into a next-generation energy source.