Effects of Different Substituents on the Crystal Structures and Antimicrobial Activities of Six Ag(I) Quinoline Compounds
Journal article, 2013

The syntheses and single crystal X-ray structures of [Ag(5-nitroquinoline)(2)]NO3 (1), [Ag(8-nitroquinoline)(2)]NO3 center dot H2O (2), [Ag(6-methoxy-8-nitroquinoline)(NO3)](n) (3), [Ag(3-quinolinecarbonitrile)(NO3)](n) (4), [Ag(3-quinolinecarbonitrile)(2)]NO3 (5), and [Ag(6-quinolinecarboxylic acid)(2)]NO3 (6) are described. As an alternative to solution chemistry, solid-state grinding could be used to prepare compounds 1 and 3, but the preparation of 4 and 5 in this way failed. The Ag(I) ions in the monomeric compounds 1, 2, 5, and 6 are coordinated to two ligands via the nitrogen atoms of the quinoline rings, thereby forming a distorted linear coordination geometry with Ag-N bond distances of 2.142(2)-2.336(2) angstrom and N-Ag-N bond angles of 163.62(13)degrees-172.25(13)degrees. The 1D coordination polymers 3 and 4 contain Ag(I) centers coordinating one ligand and two bridging nitrate groups, thereby forming a distorted trigonal planar coordination geometry with Ag-N bond distances of 2.2700(14) and 2.224(5) angstrom, Ag-O bond distances of 2.261(4)-2.536(5) angstrom, and N-Ag-O bond angles of 115.23(5)degrees-155.56(5)degrees. Hirshfeld surface analyses of compounds 1-6 are presented as d(norm) and curvedness maps. The d(norm) maps show different interaction sites around the Ag(I) ions, i.e., Ag center dot center dot center dot Ag interactions and possible O-H center dot center dot center dot O, C-H center dot center dot center dot O, C-H center dot center dot center dot N, and C-H center dot center dot center dot C hydrogen bonds. Curvedness maps are a good way of visualizing pi-pi tacking interactions between molecules. The antimicrobial activities of compounds 1, 2, and 6 were screened against 15 different multidrug-resistant strains of bacteria isolated from diabetic foot ulcers and compared to the antimicrobial activities of the clinically used silver sulfadiazine (SS). Compound 2 showed activity similar to SS against this set of test organisms, being active against all strains and having slightly better average silver efficiency than SS (5 vs 6 mu g Ag/mL). Against the standard nonresistant bacterial strains of Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, and Streptococcus pyogenes, compound 1 performed better than silver nitrate, with an average MIC of 6 mu g Ag/mL versus 18 mu g Ag/mL for the reference AgNO3. Electrospray ionization mass spectrometry (ESI-MS) analyses of compounds 3 and 6 in DMSO/MeOH confirm the two-coordinated Ag+ complexes in solution, and the results of the H-1 NMR titrations of DMSO solutions of 5-nitroquinoline and 8-nitroquinoline with AgNO3 in DMSO suggest that 5-nitroquinoline is more strongly coordinated to the silver ion.

silver(i) complexes

coordination polymers

bacterial-resistance

wound dressings

molecular-crystals

ligands

behavior

nitrate

intermolecular interactions

antibacterial

Author

Al-Shimaà A A Massoud

Chalmers, Chemical and Biological Engineering, Environmental Inorganic Chemistry

Vratislav Langer

Chalmers, Chemical and Biological Engineering, Environmental Inorganic Chemistry

Y. M. Gohar

Alexandria University

Morsy A. M. Abu-Youssef

Alexandria University

J. Janis

University of Eastern Finland

Göran Lindbergh

Encubator

Karl Hansson

Chalmers, Chemical and Biological Engineering

Lars Öhrström

Chalmers, Chemical and Biological Engineering, Physical Chemistry

Inorganic Chemistry

0020-1669 (ISSN) 1520-510X (eISSN)

Vol. 52 7 4046-4060

Subject Categories (SSIF 2011)

Chemical Sciences

DOI

10.1021/ic400081v

More information

Latest update

12/28/2018