A new denoising method for dynamic contrast-enhanced MRI
Paper in proceeding, 2008

This paper presents a new algorithm for denoising dynamic contrast-enhanced (DCE) MR images. The algorithm is called Dynamic Non-Local Means and is a novel variation on the Non-Local Means (NL-Means) algorithm. It exploits the redundancy of information in the DCE-MRI sequence of images. An evaluation of the performance of the algorithm relative to six other denoising algorithms—Gaussian filtering, the original NL-Means algorithm, bilateral filtering, anisotropic diffusion filtering, the wavelets adaptive multiscale products threshold method, and the traditional wavelet thresholding method—is also presented. The evaluation was performed by two groups of expert observers—18 signal/image processing experts, and 9 clinicians (8 radiographers and 1 radiologist)—using real DCE-MRI data. The results of the evaluation provide evidence, at the α=0.05 level of significance, that both groups of observers deem the DNLM algorithm to perform visually better than all of the other algorithms.

Author

Yaniv Gal

Andrew Mehnert

Chalmers, Signals and Systems

Andrew Bradley

Kerry McMahon

Dominic Kennedy

Stuart Crozier

Proc. 2008 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

847 - 850
978-1-4244-1814-5 (ISBN)

Areas of Advance

Life Science Engineering (2010-2018)

Subject Categories

Computer Vision and Robotics (Autonomous Systems)

Medical Image Processing

DOI

10.1109/IEMBS.2008.4649286

ISBN

978-1-4244-1814-5

More information

Created

10/7/2017