Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station
Journal article, 2013

We observed ozone (O3) in the vertical region between 250 and 0.0005 hPa (~12-96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100-0.001 hPa (~16-90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3ppmv (3%) with a vertical resolution of 3-4km over the 60 to 8hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40-1, 80-0.1, and 100-0.004hPa pressure regions, respectively. SMILES O3 abundance was 10-20% lower than all other satellite measurements at 8-0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects. © Author(s) 2013.

Author

Y. Kasai

Japan National Institute of Information and Communications Technology

Tokyo Institute of Technology

H. Sagawa

Japan National Institute of Information and Communications Technology

D. Kreyling

Japan National Institute of Information and Communications Technology

E. Dupuy

Japan National Institute of Information and Communications Technology

National Institute for Environmental Studies of Japan

P. Baron

Japan National Institute of Information and Communications Technology

J. Mendrok

Japan National Institute of Information and Communications Technology

Luleå University of Technology

K. Suzuki

University of Tokyo

Japan National Institute of Information and Communications Technology

T.O. Sato

Japan National Institute of Information and Communications Technology

Tokyo Institute of Technology

T. Nishibori

Japan National Institute of Information and Communications Technology

Japan Aerospace Exploration Agency (JAXA)

S. Mizobuchi

Japan Aerospace Exploration Agency (JAXA)

K. Kikuchi

Japan National Institute of Information and Communications Technology

T. Manabe

Osaka Prefecture University

H. Ozeki

Toho University

T. Sugita

Luleå University of Technology

M. Fujiwara

Hokkaido University

Y. Irimajiri

Japan National Institute of Information and Communications Technology

K.A. Walker

University of Toronto

University of Waterloo

P.F. Bernath

Old Dominion University

C.D. Boone

University of Waterloo

G.P. Stiller

Karlsruhe Institute of Technology (KIT)

T. von Clarmann

Karlsruhe Institute of Technology (KIT)

J. Orphal

Karlsruhe Institute of Technology (KIT)

Joachim Urban

Chalmers, Earth and Space Sciences, Global Environmental Measurements and Modelling

Donal Murtagh

Chalmers, Earth and Space Sciences, Global Environmental Measurements and Modelling

E.J. Llewellyn

University of Saskatchewan

D. A. Degenstein

University of Saskatchewan

A. E. Bourassa

University of Saskatchewan

N.D. Lloyd

University of Saskatchewan

L. Froidevaux

Jet Propulsion Laboratory, California Institute of Technology

M. Birk

German Aerospace Center (DLR)

G. Wagner

German Aerospace Center (DLR)

F. Schreier

German Aerospace Center (DLR)

J. Xu

German Aerospace Center (DLR)

P. Vogt

German Aerospace Center (DLR)

T. Trautmann

German Aerospace Center (DLR)

M. Yasui

Japan National Institute of Information and Communications Technology

Atmospheric Measurement Techniques

1867-1381 (ISSN) 1867-8548 (eISSN)

Vol. 6 9 2311-2338

Subject Categories

Meteorology and Atmospheric Sciences

DOI

10.5194/amt-6-2311-2013

More information

Latest update

5/29/2018