High-resolution mm and cm study of the obscured LIRG NGC 4418 A compact obscured nucleus fed by in-falling gas?
Journal article, 2013

Context. Understanding the nature of the power-source in luminous infrared galaxies (LIRG) is difficult due to their extreme obscuration. Observations at radio and mm wavelengths can penetrate large columns of dust and gas and provide unique insights into the properties of the compact obscured nuclei of LIRGs. Aims. The aim of this study is to constrain the dynamics, structure, and feeding of the compact nucleus of NGC 4418, and to reveal the nature of the main hidden power-source: starburst or active galactic nucleus (AGN). Methods. We obtained high spatial resolution observations of NGC 4418 at 1.4 and 5 GHz with MERLIN, and at 230 and 270 GHz with the SMA in very extended configuration. We used the continuum morphology and flux density to estimate the size of the emitting region, the star formation rate, and the dust temperature. Emission lines were used to study kinematics through position-velocity diagrams. Molecular emission was studied with population diagrams and by fitting a local thermal equilibrium (LTE) synthetic spectrum. Results. We detect bright 1-mm-line emission from CO, HC3N, HNC, and (CS)-S-34 and 1.4 GHz absorption from HI. The CO 2-1 emission and HI absorption can be fit by two velocity components at 2090 and 2180 km s(-1). We detect vibrationally excited HC3N and HNC, with T-vib similar to 300 K. Molecular excitation is consistent with a layered temperature structure, with three main components at 80, 160, and 300 K. For the hot component we estimate a source size of less than 5 pc. The nuclear molecular gas surface density of 10(4) M-circle dot pc(-2) is extremely high and similar to that found in the ultra-luminous infrared galaxy (ULIRG) Arp220. Conclusions. Our observations confirm the presence of a molecular and atomic in-flow, previously suggested by Herschel observations, which is feeding the activity in the center of NGC 4418. Molecular excitation confirms the presence of a very compact, hot dusty core. If a starburst is responsible for the observed IR flux, this has to be at least as extreme as the one in the ULIRG Arp 220, with an age of 3-10 Myr and a star formation rate > 10 M-circle dot yr(-1). If an AGN is present, it must be extremely Compton-thick.

arp 220

galaxies: starburst

galaxies: individual: NGC 4418

galaxies

interstellar-medium

line emission

dense gas

molecular gas

active galactic nuclei

galaxies: active

star-formation

luminous infrared

galaxies: ISM

ngc-4418

galaxies: kinematics and dynamics

vibrationally excited hc3n

Author

Francesco Costagliola

Chalmers, Earth and Space Sciences, Radio Astronomy and Astrophysics

Susanne Aalto

Chalmers, Earth and Space Sciences, Radio Astronomy and Astrophysics

K. Sakamoto

Academia Sinica

S. Martin

European Southern Observatory Santiago

R. Beswick

University of Manchester

Sebastien Muller

Chalmers, Earth and Space Sciences, Onsala Space Observatory

H. R. Klockner

University of Oxford

Max Planck Society

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 556 A66

Subject Categories

Astronomy, Astrophysics and Cosmology

DOI

10.1051/0004-6361/201220634

More information

Latest update

4/5/2022 6