A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kahler-Einstein metrics
Journal article, 2013
We develop a variational calculus for a certain free energy functional on the space of all probability measures on a Kahler manifold X. This functional can be seen as a generalization of Mabuchi's K-energy functional and its twisted versions to more singular situations. Applications to Monge-Ampere equations of mean field type, twisted Kahler-Einstein metrics and Moser-Trudinger type inequalities on Miller manifolds are given. Tian's alpha-invariant is generalized to singular measures, allowing in particular a proof of the existence of Kahler-Einstein metrics with positive Ricci curvature that are singular along a given anti-canonical divisor (which combined with very recent developments concerning Miller metrics with conical singularities confirms a recent conjecture of Donaldson). As another application we show that if the Calabi flow in the (anti-)canonical class exists for all times then it converges to a Kahler-Einstein metric, when a unique one exists, which is in line with a well-known conjecture. (C) 2013 Elsevier Inc. All rights reserved.
EXISTENCE
Variational methods
COMPLEX-SURFACES
SCALAR CURVATURE
SPACE
Kahler-Einstein manifolds
CONVERGENCE
K-ENERGY
FLOW
Monge-Ampere equation
HOLDER CONTINUITY
MANIFOLDS