Propagation of elastic surface waves along a cylindrical cavity and their excitation by a point force
Journal article, 1982

The existence of surface wave modes, propagating along on infinite cylindrical cavity in an elastic medium, is established for every integer m, where m is the azimuthal mode number. These waves are analogous to the Rayleigh wave on a half-space, being confined to the immediate vicinity of the cavity. The modes exhibit dispersion and have a cutoff frequency that increases with m, except for the flexural (m=1) mode which exists at all frequencies. At cutoff the phase velocity is equal to that of the shear waves and decreases, with increasing frequency, to that of the Rayleigh wave. We present results for the group velocities and displacement and stress fields of the modes and also exhibit the effect of various point forces acting near the cavity. In the vicinity of the cavity, not too near the point force, the surface wave contribution dominates the total displacement field.

surface wave

cylindrical cavity

elastic waves

Author

Anders E Boström

Dynamics

Anthony Burden

Journal of the Acoustical Society of America

0001-4966 (ISSN) 1520-8524 (eISSN)

Vol. 72 998-1004

Subject Categories (SSIF 2011)

Applied Mechanics

Fluid Mechanics and Acoustics

More information

Created

10/8/2017