Spatially extended OH+ emission from the Orion Bar and Ridge
Journal article, 2013

Context. The reactive HnO+ ions (OH+, H2O+ and H3O+) are widespread in the interstellar medium and act as precursors to the H2O molecule. While HnO+ absorption is seen on many Galactic lines of sight, active galactic nuclei often show the lines in emission. Aims: This paper shows the first example of a Galactic source of HnO+ line emission: the Orion Bar, a bright nearby photon-dominated region (PDR). Methods: We present line profiles and maps of OH+ line emission toward the Orion Bar, and upper limits to H2O+ and H3O+ lines. We analyze these HIFI data with non-local thermodynamic equilibrium radiative transfer and PDR chemical models, using newly calculated inelastic collision data for the e-OH+ system. Results: Line emission is detected over ~1' (0.12 pc), tracing the Bar itself as well as a perpendicular feature identified as the southern tip of the Orion Ridge, which borders the Orion Nebula on its western side. The line width of ≈ 4 km s-1 suggests an origin of the OH+ emission close to the PDR surface, at a depth of AV ~ 0.3-0.5 into the cloud where most hydrogen is in atomic form. Steady-state collisional and radiative excitation models for OH+ require unrealistically high column densities to match the observed line intensity, indicating that the formation of OH+ in the Bar is rapid enough to influence its excitation. Our best-fit OH+ column density of ~ 1.0 × 1014 cm-2 is similar to that in previous absorption line studies, while our limits on the ratios of OH+/H2O+ (≳ 40) and OH+/H3O+ (≳ 15) are somewhat higher than seen before. Conclusions: The column density of OH+ is consistent with estimates from a thermo-chemical model for parameters applicable to the Orion Bar, given the current uncertainties in the local gas pressure and the spectral shape of the ionizing radiation field. The unusually high OH+/H2O+ and OH+/H3O+ ratios are probably due to the high UV radiation field and electron density in this object. In the Bar, photodissociation and electron recombination are more effective destroyers of OH+ than the reaction with H2, which limits the production of H2O+. The appearance of the OH+ lines in emission is the result of the high density of electrons and H atoms in the Orion Bar, since for these species, inelastic collisions with OH+ are faster than reactive ones. In addition, chemical pumping, far-infrared pumping by local dust, and near-UV pumping by Trapezium starlight contribute to the OH+ excitation. Similar conditions may apply to extragalactic nuclei where HnO+ lines are seen in emission.

molecules

interstellar matter

astrochemistry

Author

F. F. S. van der Tak

University of Groningen

Netherlands Institute for Space Research (SRON)

Zsofia Nagy

Netherlands Institute for Space Research (SRON)

University of Groningen

V. Ossenkopf

University of Cologne

Z. Makai

University of Cologne

John H Black

Chalmers, Earth and Space Sciences, Radio Astronomy and Astrophysics

A. Faure

Grenoble Alpes University

M. Gerin

LERMA - Laboratoire d'Etudes du Rayonnement et de la Matiere en Astrophysique et Atmospheres

E. A. Bergin

University of Michigan

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 560 A95 (pp. 1-10) A95

Subject Categories

Astronomy, Astrophysics and Cosmology

Roots

Basic sciences

Infrastructure

Onsala Space Observatory

DOI

10.1051/0004-6361/201322164

More information

Latest update

5/14/2018