Kinematics and shoulder belt position of child anthropomorphic test devices during steering maneuvers.
Journal article, 2013

Objectives: The objective of this study was to quantify and compare the kinematics and shoulder belt position of child anthropomorphic test devices (ATDs) during emergency steering maneuvers. Furthermore, the ATDs were compared to the results from child volunteers aged 4 to 12 in the same test setup (Bohman, Stockman, et al. 2011). Methods: A driving study was conducted on a test track comprising 4 ATDs: the Q6, Q10, and Hybrid III (HIII) 6- and 10-year-old ATDs restrained in the rear seat of a passenger vehicle. The ATDs were exposed to 2 repeated steering maneuvers in each restraint system. The Q6 and HIII 6-year-old were restrained on booster cushions as well as high-back booster seats. The Q10 and HIII 10-year-old were restrained on booster cushions or restrained by 3-point seat belts directly on the seat. Lateral motion of the forehead and upper sternum was determined, as well as shoulder belt movement on shoulder and torso tilting angle. Results: All ATDs began to move approximately at the same point in time corresponding to a vehicle lateral acceleration of just below 0.2 g. In the later phase of the maneuver, Q10 had moved 26 percent less than the children when restrained by seat belt only and 35 percent less when on a booster cushion. Corresponding numbers for the HIII 10-year-old were 43 and 44 percent higher than for children. Compared to children, the Q6 had moved 34 percent less when restrained on a high-back booster seat and 31 percent less when on a booster cushion. Corresponding numbers for HIII 6-year-old were 7 and 28 percent higher than for children. Due to extensive variety of lateral displacements observed in the children, child performance range covers both ATD families for the evaluated sizes of 6- and 10-year-old ATDs. Conclusions: Compared to children, the HIII ATDs were closer with regards to mean values in the initial phase of the maneuver and the Q ATDs were closer in the end of the ramping phase of the lateral acceleration. The question regarding which ATD replicates better the behavior of children exposed to steering maneuvers still remains open. As shown in this study, it depends on the focus of the comparison and on what phase of the maneuver is of interest. This study provides valuable knowledge on how representative the current ATDs are for replicating potential precrash postures of children as a result of vehicle emergency steering maneuvers for a variety of restraint systems and ATD sizes.

Author

Isabelle Stockman

Chalmers, Applied Mechanics, Vehicle Safety

Chalmers, Vehicle and Traffic Safety Centre at Chalmers (SAFER)

Katarina Bohman

Chalmers, Vehicle and Traffic Safety Centre at Chalmers (SAFER)

Lotta Jakobsson

Chalmers, Vehicle and Traffic Safety Centre at Chalmers (SAFER)

Chalmers, Applied Mechanics, Vehicle Safety

Traffic Injury Prevention

1538-9588 (ISSN) 1538-957X (eISSN)

Vol. 14 8 797-806

Areas of Advance

Transport

Subject Categories (SSIF 2011)

Vehicle Engineering

DOI

10.1080/15389588.2013.766728

More information

Created

10/6/2017