Prospective Life Cycle Assessment of Graphene Production by Ultrasonication and Chemical Reduction
Journal article, 2014

One promising future bulk application of graphene is as composite additive. Therefore, we compare two production routes for insolution graphene using a cradle-to-gate lifecycle assessment focusing on potential differences in energy use, blue water footprint, human toxicity, and ecotoxicity. The data used for the assessment is based on information in scientific papers and patents. Considering the prospective nature of this study, environmental impacts from background systems such as energy production were not included. The production routes are either based on ultrasonication or chemical reduction. The results show that the ultrasonication route has lower energy and water use, but higher human and ecotoxicity impacts, compared to the chemical reduction route. However, a sensitivity analysis showed that solvent recovery in the ultrasonication process gives lower impacts for all included impact categories. The sensitivity analysis also showed that solvent recovery is important to lower the blue water footprint of the chemical reduction route as well. The results demonstrate the possibility to conduct a life cycle assessment study based mainly on information from patents and scientific articles, enabling prospective life cycle assessment studies of products at early stages of technological development.

Author

Rickard Arvidsson

Chalmers, Energy and Environment, Environmental Systems Analysis

Duncan Kushnir

Chalmers, Energy and Environment, Environmental Systems Analysis

Björn Sandén

Chalmers, Energy and Environment, Environmental Systems Analysis

Sverker Molander

Chalmers, Energy and Environment, Environmental Systems Analysis

Environmental Science & Technology

0013-936X (ISSN) 1520-5851 (eISSN)

Vol. 48 8 4529−4536-4536

Driving Forces

Sustainable development

Subject Categories

Other Environmental Engineering

DOI

10.1021/es405338k

More information

Latest update

4/6/2022 5