Average error in recovery of sparse signals and discrete fourier transform | Seyrek i̇şaretleri̇n geri̇ kazaniminda ortalama hata ve ayrik fouri̇er dönüşümü
Paper in proceeding, 2012

In compressive sensing framework it has been shown that a sparse signal can be successfully recovered from a few random measurements. The Discrete Fourier Transform (DFT) is one of the transforms that provide the best performance guarantees regardless of which components of the signal are nonzero. This result is based on the performance criterion of signal recovery with high probability. Whether the DFT is the optimum transform under average error criterion, instead of high probability criterion, has not been investigated. Here we consider this optimization problem. For this purpose, we model the signal as a random process, and propose a model where the covariance matrix of the signal is used as a measure of sparsity. We show that the DFT is, in general, not optimal despite numerous results that suggest otherwise. © 2012 IEEE.

Author

Ayca Ozcelikkale

S. Yüksel

H.M. Özaktaş

2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedings

Subject Categories (SSIF 2011)

Signal Processing

DOI

10.1109/SIU.2012.6204499

More information

Created

10/10/2017