Compositional Information-flow Security for Interactive Systems
Paper in proceedings, 2014

To achieve end-to-end security in a system built from parts, it is important to ensure that the composition of secure components is itself secure. This work investigates the compositionality of two popular conditions of possibilistic noninterference. The first condition, progress-insensitive noninterference (PINI), is the security condition enforced by practical tools like JSFlow, Paragon, sequential LIO, Jif, Flow Caml, and SPARK Examiner. We show that this condition is not preserved under fair parallel composition: composing a PINI system fairly with another PINI system can yield an insecure system. We explore constraints that allow recovering compositionality for PINI. Further, we develop a theory of compositional reasoning. In contrast to PINI, we show what PSNI behaves well under composition, with and without fairness assumptions. Our work is performed within a general framework for nondeterministic interactive systems.


Willard Thor Rafnsson

Chalmers, Computer Science and Engineering (Chalmers), Software Technology (Chalmers)

Andrei Sabelfeld

Chalmers, Computer Science and Engineering (Chalmers), Software Technology (Chalmers)

27th IEEE Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July 2014

1063-6900 (ISSN)


Areas of Advance

Information and Communication Technology

Subject Categories

Computer and Information Science


Basic sciences





More information