Toeplitz operators defined by sesquilinear forms: Fock space case
Journal article, 2014

The classical theory of Toeplitz operators in spaces of analytic functions deals usually with symbols that are bounded measurable functions on the domain in question. A further extension of the theory was made for symbols being unbounded functions, measures, and compactly supported distributions, all of them subject to some restrictions. In the context of a reproducing kernel Hilbert space we propose a certain framework for a 'maximally possible' extension of the notion of Toeplitz operators for a 'maximally wide' class of 'highly singular' symbols. Using the language of sesquilinear forms we describe a certain common pattern for a variety of analytically defined forms which, besides the covering of all previously considered cases, permits us to introduce a further substantial extension of a class of admissible symbols that generate bounded Toeplitz operators. Although our approach is unified for all reproducing kernel Hilbert spaces, for concrete operator consideration in this paper we restrict ourselves to Toeplitz operators acting on the standard Fock (or Segal-Bargmann) space.

Toeplitz operators

Fock space

Sesquilinear forms

Author

Grigori Rozenblioum

University of Gothenburg

Chalmers, Mathematical Sciences, Mathematics

N. Vasilevski

Journal of Functional Analysis

0022-1236 (ISSN) 1096-0783 (eISSN)

Vol. 267 11 4399-4430

Subject Categories

Mathematics

DOI

10.1016/j.jfa.2014.10.001

More information

Created

10/7/2017