Magnetic, Structural, and Particle Size Analysis of Single- and Multi-Core Magnetic Nanoparticles
Journal article, 2014

We have measured and analyzed three different commercial magnetic nanoparticle systems, both multi-core and single-core in nature, with the particle (core) size ranging from 20 to 100 nm. Complementary analysis methods and same characterization techniques were carried out in different labs and the results are compared with each other. The presented results primarily focus on determining the particle size-both the hydrodynamic size and the individual magnetic core size-as well as magnetic and structural properties. The used analysis methods include transmission electron microscopy, static and dynamic magnetization measurements, and Mossbauer spectroscopy. We show that particle (hydrodynamic and core) size parameters can be determined from different analysis techniques and the individual analysis results agree reasonably well. However, in order to compare size parameters precisely determined from different methods and models, it is crucial to establish standardized analysis methods and models to extract reliable parameters from the data.


magnetic particles

Magnetic analysis

magnetic materials


Frank Ludwig

Technische Universität Braunschweig

O. Kazakova

National Physical Laboratory (NPL)

L. F. Barquin

University of Cantabria

A. Fornara

SP Sveriges Tekniska Forskningsinstitut AB

L. Trahms

Physikalisch-Technische Bundesanstalt (PTB)

Uwe Steinhoff

Physikalisch-Technische Bundesanstalt (PTB)

P. Svedlindh

Uppsala University

E. Wetterskog

Uppsala University

Q. A. Pankhurst

University College London (UCL)

P. Southern

University College London (UCL)

P. Morales

University of Cantabria

M. F. Hansen

Technical University of Denmark (DTU)

C. Frandsen

Technical University of Denmark (DTU)

Eva Olsson

Chalmers, Applied Physics, Eva Olsson Group

Stefan Gustafsson

SuMo Biomaterials

Chalmers, Applied Physics, Eva Olsson Group

N. Gehrke

Nanopet Pharma

K. Ludtke-Buzug

Universitaet Zu Lübeck

C. Gruttner

Micromod Partikeltechnologie

Christian Jonasson

RISE Research Institutes of Sweden

C. Johansson

RISE Research Institutes of Sweden

IEEE Transactions on Magnetics

0018-9464 (ISSN)

Vol. 50 11 6971714

Subject Categories

Physical Sciences

Nano Technology



More information

Latest update

4/5/2022 6