An elementary approach to optimal stopping problems for AR(1) sequences
Journal article, 2011

Optimal stopping problems form a class of stochastic optimization problems that has a wide range of applications in sequential statistics and mathematical finance. Here we consider a general optimal stopping problem with discounting for autoregressive processes. Our strategy for a solution consists of two steps: First we give elementary conditions to ensure that an optimal stopping time is of threshold type. Then the resulting one-dimensional problem of finding the optimal threshold is to be solved explicitly. The second step is carried out for the case of exponentially distributed innovations. © Taylor & Francis Group, LLC.

Optimal stopping

Threshold times

Exponential innovations

Autoregressive sequence

Author

Sören Christensen

Chalmers, Mathematical Sciences, Mathematical Statistics

University of Gothenburg

A. Irle

A. Novikov

Sequential Analysis

0747-4946 (ISSN) 15324176 (eISSN)

Vol. 30 1 79-93

Subject Categories

Probability Theory and Statistics

DOI

10.1080/07474946.2011.539925

More information

Created

10/7/2017