Poly-stream Comminution Circuits
Other conference contribution, 2015
Comminution and classification circuits consume significant amounts of energy. Some estimates show that
comminution processes accounts for around 40 % of the total energy consumed in mining operations and 1.5-1.8 % of the
total national energy consumption in mining intensive countries such as South Africa, Australia and Canada (Tromans, 2008).
Apart from recent market fluctuations the global trend is that the demand for metals and minerals is increasing (Norgate and
Haque, 2010). At the same time the ore competence generally increases as material is mined at greater depths and the grade is
usually lower. The consequence is that increased amounts of raw material need to be processed in larger and larger
comminution devices. The task of reducing the energy consumption in this context seems daunting.
The conventional comminution circuit is usually based on a crushing and screening process followed by a tumbling milling
process. HPGR machines and other new devices have also become more common during the last 20 years. Independent of
what type on units that are used in the circuits the global trend is that larger and larger comminution devices are manufactured
and installed.
With this outlook as a foundation we propose an alternative mindset to think about circuits; poly-stream comminution circuits.
A general trend in product development is that technologies transform from mono-systems to poly-systems. In this paper the
concept is described and exemplified in a case study including a comparison with a conventional SABC circuit. In poly-stream
circuits the material streams after one or several parallel primary crushing stages are split into 5-20 streams by using ore sorting
and classification units. Each stream handles a proportional throughput capacity and the material passes through a dedicated
set of smaller comminution and classification modular units with settings optimized to target the specific properties of the
material in each stream.
The results of this conceptual case study suggests that smaller, instead of larger, comminution and classification units open up
for modularization, higher theoretical operational availability, better plant flexibility and expansion potential. Lower mass flow
streams enable the use of ore sorting with separate treatment and early rejection of gangue. It is generally also easier to achieve
higher energy efficiency performance for smaller comminution, classification and separation units.
There are a number of apparent challenges and problems associated with the concept. It requires new solutions for stream rerouting,
sensor technology, advance control systems and advanced maintenance management systems to name a few. However,
the consequent conclusion of this hypothetical concept is that perhaps the focus of research and development efforts should
target material handling, sensor technology and comminution unit modularization in order to meet the challenges of future
comminution circuits.
Ore Sorting
Comminution
Energy efficiency
Circuit Design
Pre-concentration