Eisenstein series and automorphic representations
Preprint, 2015

We provide an introduction to the theory of Eisenstein series and automorphic forms on real simple Lie groups G, emphasising the role of representation theory. It is useful to take a slightly wider view and define all objects over the (rational) adeles A, thereby also paving the way for connections to number theory, representation theory and the Langlands program. Most of the results we present are already scattered throughout the mathematics literature but our exposition collects them together and is driven by examples. Many interesting aspects of these functions are hidden in their Fourier coefficients with respect to unipotent subgroups and a large part of our focus is to explain and derive general theorems on these Fourier expansions. Specifically, we give complete proofs of Langlands' constant term formula for Eisenstein series on adelic groups G(A) as well as the Casselman--Shalika formula for the p-adic spherical Whittaker vector associated to unramified automorphic representations of G(Q_p). Somewhat surprisingly, all these results have natural interpretations as encoding physical effects in string theory. We therefore introduce also some basic concepts of string theory, aimed toward mathematicians, emphasising the role of automorphic forms. In addition, we explain how the classical theory of Hecke operators fits into the modern theory of automorphic representations of adelic groups, thereby providing a connection with some key elements in the Langlands program, such as the Langlands dual group LG and automorphic L-functions. Our treatise concludes with a detailed list of interesting open questions and pointers to additional topics where automorphic forms occur in string theory.


Philipp Fleig

Henrik Gustafsson

Chalmers, Fundamental Physics

Axel Kleinschmidt

Daniel Persson

Chalmers, Fundamental Physics

Subject Categories


Other Physics Topics

Discrete Mathematics


Basic sciences

More information