Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures
Journal article, 2015

Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule.

Lithography

Molecules

Nanowires

Optical-Activity

Resonances

Photonic

Nanocrystals

Oligomers

Circular-Dichroism

Metamaterial

Plasmonic Nanostructures

Author

X. R. Tian

Shandong Normal University

Yurui Fang

Chalmers, Applied Physics, Bionanophotonics

M. T. Sun

Chinese Academy of Sciences

Scientific Reports

2045-2322 (ISSN) 20452322 (eISSN)

Vol. 5 Article no. 17534- 17534

Subject Categories (SSIF 2011)

Other Engineering and Technologies

DOI

10.1038/srep17534

More information

Latest update

10/2/2018