Structural and electrochemical characterization of BaCe0.7Zr0.2Y0.05Zn0.05O3 as an electrolyte for SOFC-H
Paper in proceeding, 2016

As a potential electrolyte for proton-conducting solid oxide fuel cells (SOFC-Hs) and to get better protonic conductivity and stability, zinc doped BCZY material has been found to be promising. In this study, we report a new composition of proton conductors BaCe0.7Zr0.2Y0.05Zn0.05O3 (BCZYZn5) which was investigated using XRD, SEM and conductivity measurements. Rietveld refinement of the XRD data revel a cubic perovskite structure with Pm-3m space group. BaCe0.7Zr0.2Y0.05Zn0.05O3 shows cell parameter a = 4.3452(9) Å. Scanning electron microscopy images shows that the grain sizes are large and compact which gives the sample high density and good protonic conductivity. The total conductivity in wet atmosphere is significantly higher than that of dry condition and the conductivity was found to be 0.276 × 10-3 Scm-1 and 0.204 × 10-3 Scm-1 at 600°C in wet and dry Ar, respectively. This study indicated that perovskite electrolyte BCZYZn5 is a promising material for the next generation intermediate temperature solid oxide fuel cells (IT-SOFCs).

Author

A. Afif

Universiti Brunei Darussalam

N. Radenahmad

Universiti Brunei Darussalam

C.M. Lim

Universiti Brunei Darussalam

Q. Cheok

Universiti Brunei Darussalam

A. Islam

Universiti Brunei Darussalam

Habibur Seikh Mohammad Rahman

Chalmers, Chemistry and Chemical Engineering, Energy and Material

A.K. Azad

Universiti Brunei Darussalam

IOP Conference Series: Materials Science and Engineering

17578981 (ISSN) 1757899X (eISSN)

Vol. 121 1 012006

Subject Categories

Other Materials Engineering

DOI

10.1088/1757-899X/121/1/012006

More information

Created

10/7/2017