Poly(vinylferrocene)-Reduced Graphene Oxide as a High Power/High Capacity Cathodic Battery Material
Journal article, 2016

The preparation and performance of a new cathodic battery material consisting of a composite of poly(vinylferrocene) (PVFc) and reduced graphene oxide (rGO) is described. It shows the highest charge/discharge efficiency (at a rate of 100 A g(-1)) ever reported for ferrocene-polymer materials. The composite allows for specific capacities up to 0.21 mAh cm(-2) (770 mC cm(-2), 29 mu m film thickness) at a specific capacity density of 114 mAh g(-1) and less than 5% performance decay over 300 cycles. The composite material is binder free and the charge storing PVFc accounts for 88% of the total weight of the cathodic material. The superb performance is based on (i) perfect self-assembling of oxidized PVFc on graphene oxide (GO) leading to PVFc@GO, (ii) its stepwise (n steps) transfer onto a current collector (CC) (PVFc@GO)(n) @CC (n = drop casting steps), and (iii) the efficient electrochemical transformation of GO into rGO in the composite using viologen as homogeneous electrocatalyst. The self-assembling step is analyzed by zeta potential and atomic force microscopy (AFM) studies, demonstrating heavy ferrocene loading on GO and a mesoporous composite structure, respectively. Complete GO/rGO transition and quantitative ClO4- on breathing of the composite are found by electrochemical quartz crystal microbalance and by electrochemical AFM.

rechargeable lithium batteries

graphite oxide

atomic-force microscopy

Chemistry

li-ion

Physics

electrical-conductivity

Energy & Fuels

Materials Science

batteries

functionalized graphene

aqueous-electrolyte

raman-spectroscopy

organic-solvents

polymer nanocomposites

Author

S. M. Beladi-Mousavi

Osnabrück University

S. Sadaf

Osnabrück University

L. Walder

Osnabrück University

M. Gallei

Technische Universität Darmstadt

C. Ruttiger

Technische Universität Darmstadt

Siegfried Eigler

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

C. E. Halbig

University of Erlangen-Nuremberg (FAU)

Advanced Energy Materials

1614-6832 (ISSN) 1614-6840 (eISSN)

Vol. 6 12 1600108

Subject Categories

Condensed Matter Physics

DOI

10.1002/aenm.201600108

More information

Latest update

4/5/2022 7