Proposed Implementation of "Non-Physical" Four-Dimensional Polarization Rotations
Journal article, 2016

Recently one of us proposed a new formalism for modeling electromagnetic wave transformations for coherent communication using a real, four-vector description instead of the conventionally used Jones calculus or the Mueller matrices. The four-vector can then handle all superpositions of two orthogonal polarization basis and two orthogonal time bases (e.g., the in-phase and quadrature phase). In developing this formulation it was found that to provide a general but minimal framework for such rotations, it is natural to divide the six generators of four-dimensional (4d) rotations into two groups of three generators, the right-and the left-isoclinic matrices. Of the six transformations these generators define, it was furthermore found that four of them are readily implemented by linear optical components, while two of then were impossible to implement by such means. In this paper, we detail the reason these two "unphysical" rotations cannot be implemented with linear optics. We also suggest how they can be implemented, but at a cost in the signal-to-noise ratio, and give this minimum cost.

quantum noise

Coherent optical transmission

four-dimensional modulation

optical polarization

Author

G. Bjork

AlbaNova University Center

K. Stensson

AlbaNova University Center

Magnus Karlsson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Journal of Lightwave Technology

0733-8724 (ISSN) 1558-2213 (eISSN)

Vol. 34 14 3317-3322 7484751

Areas of Advance

Information and Communication Technology

Subject Categories (SSIF 2011)

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/jlt.2016.2574912

More information

Latest update

4/10/2019