Learning with Geometric Embeddings of Graphs
Doctoral thesis, 2016
Author
Fredrik Johansson
Chalmers, Computer Science and Engineering (Chalmers), Computing Science (Chalmers)
Weighted theta functions and embeddings with applications to Max-Cut, clustering and summarization
Advances in Neural Information Processing Systems,;Vol. 2015-January(2015)p. 1018-1026
Paper in proceeding
Entity disambiguation in anonymized graphs using graph kernels
22nd ACM International Conference on Information and Knowledge Management, CIKM 2013; San Francisco, CA; United States; 27 October 2013 through 1 November 2013,;(2013)p. 1037-1046
Paper in proceeding
Global graph kernels using geometric embeddings
Proceedings of the 31st International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,;(2014)p. 694-702
Paper in proceeding
Learning with similarity functions on graphs using matchings of geometric embeddings
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,;Vol. 2015-August(2015)p. 467-476
Paper in proceeding
Subject Categories
Probability Theory and Statistics
Computer Science
Discrete Mathematics
ISBN
978-91-7597-491-0
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4172
Publisher
Chalmers
EF, Hörsalsvägen 11, Chalmers
Opponent: Prof. Kurt Mehlhorn, Max Planck Institute for Informatics, Saarbrücken, Germany