Proposal for dark exciton based chemical sensors
Journal article, 2017

The rapidly increasing use of sensors throughout different research disciplines and the demand for more efficient devices with less power consumption depends critically on the emergence of new sensor materials and novel sensor concepts. Atomically thin transition metal dichalcogenides have a huge potential for sensor development within a wide range of applications. Their optimal surface-to-volume ratio combined with strong light-matter interaction results in a high sensitivity to changes in their surroundings. Here, we present a highly efficient sensing mechanism to detect molecules based on dark excitons in these materials. We show that the presence of molecules with a dipole moment transforms dark states into bright excitons, resulting in an additional pronounced peak in easy accessible optical spectra. This effect exhibits a huge potential for sensor applications, since it offers an unambiguous optical fingerprint for the detection of molecules-in contrast to common sensing schemes relying on small peak shifts and intensity changes.

Author

Maja Feierabend

Chalmers, Physics, Condensed Matter Theory

Gunnar Berghäuser

Chalmers, Physics, Condensed Matter Theory

A. Knorr

Technische Universität Berlin

Ermin Malic

Chalmers, Physics, Condensed Matter Theory

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 8 14776

Subject Categories

Atom and Molecular Physics and Optics

Condensed Matter Physics

DOI

10.1038/ncomms14776

More information

Latest update

4/6/2022 2