On the Dirac and Pauli Operators with Several Aharonov-Bohm Solenoids
Journal article, 2006

We study the self-adjoint Pauli operators that can be realized as the square of a self-adjoint Dirac operator and correspond to a magnetic field consisting of a finite number of Aharonov-Bohm solenoids and a regular part, and prove an Aharonov-Casher type formula for the number of zero-modes for these operators. We also see that essentially only one of the Pauli operators are spin-flip invariant, and this operator does not have any zero-modes.

spectral analysis

Schrödinger operator


Mikael Persson

University of Gothenburg

Chalmers, Mathematical Sciences, Mathematics

Letters in Mathematical Physics

0377-9017 (ISSN) 1573-0530 (eISSN)

Vol. 78 139-156

Subject Categories

Mathematical Analysis

More information