Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid
Journal article, 2017

In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), delta-Al2O3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % delta-Al2O3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazo- 0) hum bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to m elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Le ions. However, a close comparison between the structural (a) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the Motion of the Li+ ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (>= 20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural. alpha-relaxation, two more local relaxation processes, denoted)6 and y, are observed. The fi-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the y -relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.

Author

Mansoureh Shojaatalhoseini

Chalmers, Physics, Condensed Matter Physics

Khalid Elamin

Chalmers, Physics, Condensed Matter Physics

Jan Swenson

Chalmers, Physics, Condensed Matter Physics

Journal of Physical Chemistry B

1520-6106 (ISSN) 1520-5207 (eISSN)

Vol. 121 41 9699-9707

Subject Categories

Physical Chemistry

DOI

10.1021/acs.jpcb.7b03985

PubMed

28926256

More information

Created

11/16/2017