Carbon nanotube based bolometer
Journal article, 2006

The contacts of single carbon nanotubes and bundles of carbon nanotubes with superconducting and metallic electrodes are investigated in order to create bolometers and electron coolers. Tunneling contacts of the carbon nanotubes with aluminum electrodes are obtained. The current-voltage characteristics of junctions are analyzed for temperatures from room temperature to 300 mK. The resistance of individual nanotubes is primarily determined by defects and is too large for applications. The use of the bundles of carbon nanotubes makes it possible to considerably reduce the resistance of the bolometer, which is determined by a small number of conducting tubes with good tunneling contacts with the electrodes. The energy gap is equal to hundreds and tens of millivolt in the former and latter cases, respectively. Structures containing bundles of carbon nanotubes can be described in a model with a Schottky barrier. The samples with bundles of carbon nanotubes exhibit the bolometric response to external high-frequency radiation at a frequency of 110 GHz with an amplitude up to 100 μV and a temperature voltage response to 0.4 mV/K.


Carbon nanotube


Mikhail Tarasov

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Johannes Svensson

Chalmers, Applied Physics, Subatomic Physics

Juergen Weis


Leonid Kuzmin

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Eleanor E B Campbell

University of Gothenburg

JETP Letters

0021-3640 (ISSN) 1090-6487 (eISSN)

Vol. 84 5 267-270

Subject Categories

Condensed Matter Physics



More information

Latest update