Shared Resources in Distributed Systems: Analytical Tools for Evaluation and Self-stabilizing Provisioning
Doctoral thesis, 2018
self-stabilization
smart grid
online algorithms
shared object systems
resource sharing
software-defined networks
distributed algorithms
Author
Iosif Salem
Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)
Shared-object system equilibria: Delay and throughput analysis
17th International Conference on Distributed Computing and Networking, ICDCN 2016; Singapore; Singapore; 4 January 2016 through 7 January 2016,;(2016)p. Art. no. a30-
Paper in proceeding
Tailor your curves after your costume: Supply-following demand in smart grids through the Adwords problem
Proceedings of the ACM Symposium on Applied Computing,;Vol. 04-08-April-2016(2016)p. 2127-2134
Paper in proceeding
A Self-Organizing Distributed and In-Band SDN Control Plane
37th IEEE International Conference on Distributed Computing Systems, ICDCS 2017, Atlanta, United States, 5-8 June 2017,;(2017)p. 2656-2657
Paper in proceeding
Iosif Salem, Elad M. Schiller. Practically-Self-Stabilizing Vector Clocks in the Absence of Execution Fairness
In this thesis, we develop analytical tools for the evaluation and self-stabilizing provisioning of shared-resources in distributed systems. We first focus on systems where resource demand and supply varies, and study cases of reusable and non-reusable resources. We study shared-object systems, where system nodes demand mutually exclusive access to a number of objects in a continuous fashion. We develop analytical tools for computing the expected delay and throughput of such systems, in a wide range of system utilization scenarios, including saturation points. Moreover, we study systems where nodes share energy resources, and focus on optimizing the available resources on a system-level. We develop online algorithms that use the flexibility on resource demand, to optimize the utilization of the available supply, and prove their competitive ratios.
Recovery from failures is necessary for provisioning shared resources. Dynamic and complex systems are often designed based on a failure model, but it is important that they recover even after the occurrence of unexpected failures, outside the failure model. Such failures can include topological changes in the network, stale information in the nodes' memory, communication failures, etc. These failures are further amplified by the system's asynchrony. In these settings, we first focus on provisioning of network resources, in terms of network control and ordering of distributed events. We study Software-Defined Networks (SDNs) and specifically their control planes. We provide a self-stabilizing distributed algorithm for a fault-tolerant SDN control plane, that deals with communication failures, topological changes, as well as, with transient faults, that can bring the system in an arbitrary state. Moreover, we focus on ordering distributed events in asynchronous message-passing systems, in the absence of execution fairness. In these extreme asynchronous settings, we provide a practically-self-stabilizing distributed algorithm, that uses bounded memory and yet, can tolerate concurrent counter overflows, when counting distributed events, as well as transient faults.
Subject Categories
Computer Engineering
Computer Science
Computer Systems
Areas of Advance
Information and Communication Technology
Energy
ISBN
978-91-7597-682-2
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4363
Publisher
Chalmers
SB-H5, Sven Hultins Gata 6, Chalmers
Opponent: Prof. Dr. Christian Scheideler, Paderborn University, Paderborn, Germany