Design For Manufacturing and Producibility in Fabricated Aerospace Structures
Licentiate thesis, 2018
The goal of this research is to analyze the current situation in industry and investigate and propose methods and tools within Design and Quality Engineering to solve producibility problems involving welded high performance structures. The research group “Robust Design and Geometry Assurance” at Chalmers University of Technology, in which this thesis has been produced, has the objective to simulate and foresee geometrical quality problems during the early phases of the product realization process to allow the development of robust concepts and the optimization of tolerances, thus solving producibility problems. Virtual manufacturing is a key within the multidisciplinary design process of aerospace components, in which automated processes analyze broad sets of design variants with regard to various disciplines. However, as studied in this thesis, existing methods and tools do not cover all aspects that define the quality of welded structures. Furthermore, to this day, not all phenomena related to welding can be virtually modelled. Understanding causes and effects still relies on expert judgements and physical experimentation to a great deal. However, when it comes to assessing the capability of many geometrical variants, such an effort might be costly. This deficiency indicates the need for virtual assessment methods and systematic experimentation to produce process capability data that can be reused in future projects.
To fulfill that need, this thesis presents a producibility model to represent the fabrication process in order to understand how variation is originated and propagated. With this representation at hand, this thesis builds on the Welding Capability Assessment Method (WCAM). The WCAM is tool with which to support systematic identification and assessment of design issues related to product geometry critical to the welding process. Within this method, a list of potential failure modes during welding is connected to specific design parameters. Once the critical design parameters have been identified, quantitative methods are proposed to calculate tolerances to reduce the likelihood of welding failures.
Combinations of specialized information about welding problems, know-how, inspection and simulation data have been used to evaluate the welding capabilities of a number of product geometries. Patterns and engineering rules can be extracted by combining sources of data, both qualitative and quantitative. With WCAM, evaluations are no longer limited to a single geometry and the study of the process parameter window. Instead, the welding capability space, meaning all geometrical variants that fulfill manufacturing quality, is assessed. This information can be used to perform optimization and evaluate trade-off alternatives in terms of producibility during design space exploration and analysis, thus supporting the multidisciplinary design process.
DFM
Producibility
Process Capability Data
Welding.
Variation Management
Author
Julia Madrid
Chalmers, Industrial and Materials Science, Product Development
A Welding Capability Assessment Method (WCAM) to support multidisciplinary design of aircraft structures
International Journal on Interactive Design and Manufacturing,;Vol. 12(2018)p. 833-851
Journal article
Development of a conceptual framework to assess producibility for fabricated aerospace components
Procedia CIRP,;Vol. 41(2016)p. 681-686
Paper in proceeding
Enabling reuse of inspection data to support robust design: a case in the aerospace industry
Procedia CIRP,;Vol. 43(2016)p. 41-46
Paper in proceeding
An approach for producibility and DFM-methodology in aerospace engine component development
Procedia CIRP,;Vol. 11(2013)p. 151-156
Paper in proceeding
Subject Categories
Production Engineering, Human Work Science and Ergonomics
Aerospace Engineering
Areas of Advance
Production
Publisher
Chalmers
Virtual Development Laboratory (VDL)
Opponent: Amer Ćatić , Volvo Group Trucks Technology, Sweden