Almost holomorphic Poincaré series corresponding to products of harmonic Siegel–Maass forms
Journal article, 2016

© 2016, The Author(s). We investigate Poincaré series, where we average products of terms of Fourier series of real-analytic Siegel modular forms. There are some (trivial) special cases for which the products of terms of Fourier series of elliptic modular forms and harmonic Maass forms are almost holomorphic, in which case the corresponding Poincaré series are almost holomorphic as well. In general, this is not the case. The main point of this paper is the study of Siegel–Poincaré series of degree 2 attached to products of terms of Fourier series of harmonic Siegel–Maass forms and holomorphic Siegel modular forms. We establish conditions on the convergence and nonvanishing of such Siegel–Poincaré series. We surprisingly discover that these Poincaré series are almost holomorphic Siegel modular forms, although the product of terms of Fourier series of harmonic Siegel–Maass forms and holomorphic Siegel modular forms (in contrast to the elliptic case) is not almost holomorphic. Our proof employs tools from representation theory. In particular, we determine some constituents of the tensor product of Harish-Chandra modules with walls.

Harish-Chandra modules

Almost holomorphic modular forms

Siegel modular forms

Author

Kathrin Bringmann

University of Cologne

Olav K. Richter

University of North Texas

Martin Westerholt- Raum

Chalmers, Mathematical Sciences, Algebra and geometry

Research in Mathematical Sciences

2522-0144 (ISSN) 2197-9847 (eISSN)

Vol. 3 1 30

Subject Categories

Algebra and Logic

Geometry

Mathematical Analysis

DOI

10.1186/s40687-016-0080-y

More information

Latest update

8/8/2023 6